Hình thoi ABCD có góc A=60 độ. Kẻ BE vuông góc AD, BF vuông góc AC (E thuộc AD, F thuộc AC) tâm giác BEF là tâm giác gì? Vì sao?
Hình thoi ABCD có \(\widehat{A}=60^0\). Trên cạnh AD lấy điểm M, trên cạnh DC lấy điểm N sao cho AM = DN. Tam giác BMN là tam giác gì ? Vì sao ?
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao ?
Cho tam giác ABC, các đường cao BD và CE.Gọi M là trung điểm của BC ,H:K lần lượt là chân đường vuông góc kẻ từ M đến AC và AB.Gọi I là trung điểm của DE
Tứ giác MHIK là hình gì? Vì sao
Bài 12: Cho hình thoi ABCD có AH là đường cao. Gọi M là trung điểm của AD . Biết a) Chứng minh: HM = AM b) Chứng minh: Tam giác AHM đều c) Tính số đo các góc của hình thoi ABCD.
Bài 10: Cho hình thoi ABCD có hat A =60^ .Kẻ BH vuông góc với AD tạiH .Lấy E thuộc tia BH sao cho BH = HE Nối EA và ED . Chứng minh rằng: a) H là trung điểm của AD b) Tứ giác ABDE là hình thoi c) D là trung điểm của CE d) AC = BE .
Cho tam giác ABC có 3 góc nhọn (AB<AC), đường cao AD và BE. Tia phân giác của góc DAC cắt BE, BC theo thứ tự ở I và K. Tia phân giác của góc EBC cắt AD, AC theo thứ tự M và N. Chứng minh tam giác MINK là hình thoi
Phương pháp: Sử dụng tính chất và định nghĩa của hình
thoi để giải toán
Bài 1. Cho hình thoi ABCD có góc B = 60°. Kẻ AE vuông DC, AF vuông BC.
a) Chứng minh AE = AF.
b) Chứng minh tam giác AEF đều.
c) Biết BD = 16 cm, tính chu vi tam giác AEF.
Cho hình thoi ABCD có góc A bằng 60 độ. Trên các cạnh AB và BC lần lượt lấy hai điểm E và F sao cho BE+BF=BD. Chứng minh rằng ΔDEF đều.