Bài 1: Hình thang ABCD (AB//CD) có các tia phân giác của các góc A và D gặp nhau tại điểm E thuộc cạnh BC. Chứng minh rằng:
a) \(\widehat{AED}\) = 90o b) AD=AB+CD
mong các bạn giúp đỡ!
1. Hình thang ABCD (AB//CD) có B-C=60, D=4/5A. Tính các góc hthang ABCD
2.Cho hthang ABCD (AB//CD), trong đó 2 tia phân giác của 2 góc A, B cắt nhau tại điểm K thuộc đáy CD. C/m tổng 2 cạnh bên = cạnh đáy CD của hthang
3.Cho hình thang ABCD( AD//BC) có AC là tia phân giác của góc A
a) CM: AB=BC.b)chứng minh tứ giác abcd cs ab =bc và ac là tia phân giác góc a .ch/m rằng abcd là hình thang
Cho hình thang ABCD có AB//CD các đường phân giác của các góc A và B cắt nhau tại điểm k thuộc cạnh CD các đường phân giác của các góc C và d cách nhau tại điểm I chứng minh AD + BC = CD chứng minh ia = ib
Cho hình thang ABCD (AB//CD), biết AD+BC=AB. Hai tia phân giác của hai góc C và D cắt nhau tại E. Chứng minh rằng 3 điểm A,B,E thẳng hàng.
(Không dùng tính chất hình thang cân và đường trung bình nha!)
Cho hình thang ABCD (AB//CD), biết AD+BC=AB. Hai tia phân giác của hai góc C và D cắt nhau tại E. Chứng minh rằng 3 điểm A,B,E thẳng hàng
(Không dùng tính chất hình thang cân và đường trung bình nha!)
cho hình thang ABCD (AB//CD) trong đó hai đường phân giác của góc A và B cắt nhau tại điểm k thuộc đáy CD,Chứng minh rằng tổng hai cạnh bên bằng đáy CD của hình thang
cho hình thang ABCD ( AB // CD ). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc đáy CD. Chứng minh AD + BC = DC. ( nếu có thể thì giúp mình vẽ hình luôn ạ. Cảm ơn).
Cho hình thang ABCD (AB//CD) có CD= AD+BC . CMR tia phân giác của A và B cắt nhau tại một điểm thuộc CD.
Cho hình thang ABCD ( AB//CD, AB<CD) hai tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB,CD lần lượt tại E và F
a) Tìm các hình thang
b) Chứng minh rằng tam giác BEI cân