\(AB=\sqrt{SA^2+SB^2}=a\sqrt{2}\)
\(AC=\sqrt{SA^2+SC^2-2SA.SC.cos120^0}=\sqrt{3}\)
\(BC=\sqrt{SB^2+SC^2-2SB.SC.cos60^0}=a\)
\(\Rightarrow AB^2+BC^2=AC^2\Rightarrow\Delta ABC\) vuông tại B
Gọi H là hình chiếu vuông góc của S lên (ABC) \(\Rightarrow\) H là tâm đường tròn ngoại tiếp ABC (do SA=SB=SC)
\(\Rightarrow\) H trùng trung điểm AC
Gọi M là trung điểm SA \(\Rightarrow MH||SC\Rightarrow\) góc giữa SC và (SAB) bằng góc giữa MH và (SAB)
Gọi N là trung điểm AB \(\Rightarrow HN\perp AB\Rightarrow AB\perp\left(SHN\right)\)
Trong mp (SHN), kẻ \(HK\perp SN\Rightarrow HK\perp\left(SAB\right)\)
\(\Rightarrow\widehat{KMH}\) là góc giữa SC và (SAB)
\(SH=\sqrt{SA^2-\left(\dfrac{AC}{2}\right)^2}=...\)
\(MH=\dfrac{1}{2}SA=...\) (trung tuyến ứng với cạnh huyền)
\(NH=\dfrac{1}{2}BC=...\) (đường trung bình)
\(\Rightarrow\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{NH^2}\Rightarrow HK=...\)
\(\Rightarrow sin\widehat{KMH}=\dfrac{HK}{MH}=...\)