Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD. Điểm N(1;-2) thỏa mãn 2vecto NB+vecto NC=0 và điểm M(3;6) thuộc đường thẳng chứa cạnh AD. gọi H là hình chiếu vuong góc của A xuống đường thẳng DN. Xác định tọa độ các đỉnh của hình vuông ABCD biết khoảng cách từ H đến cạnh CD bằng \(\frac{12\sqrt{2}}{13}\) và đỉnh A có hoành độ là số nguyên lớn hơn 2
Trong mặt phẳng với hệ trục toạ độ Oxy,cho hai điểm A(1;1),B(-4;3) và đường thẳng d:x-2y-1=0.Tìm điểm M thuộc d có toạ độ nguyên sao cho khoảng cách từ M đến đường thẳng AB bằng 6
Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có N là trung điểm của cạnh CD và đường thẳng BN có phương trình là \(13x-10y+13=0\), điểm \(M\left(-1;2\right)\) thuộc đoạn thẳng AC sao cho AC=4AM. Gọi H là điểm đối xứng với N qua C. Tìm tọa độ các đỉnh A, B, C, D biết rằng 2AC=2AB và điểm H thuộc đường thẳng \(\Delta:2x-3y=0\)
Trong mặt phẳng với hệ tọa độ oxy cho tam giác ABc có đỉnh B(2;-1) đường phân giác trong của góc a là đường thẳng đen ta có pt x+2y-5=0 điểm c thuộc trục tung sao cho khoảng cách từ điểm c đến đen ta =3 lần khoảng cách từ b đến đen ta tìm tọa độ c và viết pt các cạnh tam giác abc
cho đường thẳng d có phương trình x - y = 0 và điểm M(2;1) : a) viết phương trình tổng quát của đường thẳng đối xứng với đường thẳng d qua điểm M ; b) tìm hình chiếu của M trên đường thẳng d .
Trong mặt phẳng Oxy, cho A(7;-2), B(-4;9). C(5;4)
a) Chứng minh 3 điểm A B C tạo thành tam giác. Tìm tọa độ D để ABCD là hình bình hành?
b) Tìm tọa độ chân đường cao H hạ từ đỉnh A của tam giác ABC?
c) Viết phương trình đường thẳng đi qua điểm M(-2;3) và vuông góc với đường thẳng (d):3x-4y+1=0.
Bài 1: Viết phương trình đường tròn có tâm I thuộc đường thẳng y=x và đường tròn đó đi qua A(0;1) đồng thời tiếp xúc với đường thẳng x= 2
Bài 2: Hình vuông ABCD ; tâm I(3;2) . Điểm M(2;3) thuộc đường thẳng AB . Điểm N(5;2) thuộc đường thẳng AD . Viết phương trình AB và AD ( biết đường thẳng AB hệ số góc dương )
Cho hình vuông ABCD có M, N lần lượt là trung điểm của BC,CD ; H là giao điểm của AM và BN . Xác định tọa độ các đỉnh của hình vuông biết AB: x-y+4=0 . d(H,AB) = \(\dfrac{8\sqrt{2}}{5}\) , điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương
BÀI 1: Cho hình vuông ABCD tâm I. Trên AB,AD lây M và E sao cho AM=AE. Trên BC lâyE(-1;7) sao cho AM=BF. Gọi H là hình chiếu của M trên EF. Phương trình đường tròn ngoại tiếp ABH là x^2+y^2+4x-2y-15=0 và phương trình đường thẳng AF: x-2=0. Tìm A, H biết hoành độ điểm A và hoành độ điểm H lớn hơn 0
BÀI 2: Cho ABC với A(3;3), B(-1;0); C(2;4). Tìm toạ độ D thuộc AB sao cho có hình vuông DEFG với E thuộc AC, F,G thuộc BC
BÀI 3: Cho ABC cân tại C có S = 8 và phương trình đường cao CH: x-1=0. Gọi I là hình chiếu vuông góc của A trên BC. Trên tia AI lây E(-1;7) sao cho AE=AC. Tìm tọa độ các đỉnh ∆ABC biết tung độ điểm A và tung độ điểm C lớn hơn 6