Bài 1:
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)
\(\Leftrightarrow100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2=0\)
\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)=0\)
\(\Leftrightarrow2.198+2.204-2.212-2.190=0\)
\(\Leftrightarrow2\left(198+204-212-190\right)=0\)
\(\Leftrightarrow2.0=0\) (đúng)
Bài 2:
a) \(263^2+74.263+37^2\)
\(=263^2+2.37.263+37^2\)
\(=\left(263+37\right)^2\)
b) \(\left(50^2+48^2+46^2+...+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
\(=50^2+48^2+46^2+...+2^2-49^2-47^2-45^2-...-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50+49\right)+\left(48+47\right)+\left(46+45\right)+...+\left(2+1\right)\)
\(=50+49+48+47+46+45+...+2+1\)
\(=\dfrac{\left(50+1\right).\left(50-1+1\right)}{2}=1275\)
Kết luận ...