\(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|\)
⇔ \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}+\overrightarrow{CB}\right|\) (1)
Trên cạnh AB lấy O sao cho \(\dfrac{OA}{OB}=\dfrac{1}{2}\)
⇒ \(2\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\)
Trên cạnh tia đối của tia BC lấy E sao cho \(\dfrac{EB}{BC}=\dfrac{1}{3}\)
⇒ \(3\overrightarrow{EB}+\overrightarrow{CB}=\overrightarrow{0}\)
Vậy (1) ⇒ \(\left|3\overrightarrow{MO}+2\overrightarrow{OA}+\overrightarrow{OB}\right|=\left|3\overrightarrow{ME}+3\overrightarrow{EB}+\overrightarrow{CB}\right|\)
⇒ 3MO = 3ME
⇒ MO = ME
⇒ M nằm trên đường trung trực của OE