Cho \(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}\)và a+2b+c≠0. Tính giá trị của biểu thức M=\(\dfrac{a^3.c^2.b^{2015}}{b^{2020}}\)
Biết \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a},\)với a,b,c là các số thực khác 0.
Tính giá trị của biểu thức M= \(\dfrac{a^{2019}+b^{2019}+c^{2019}}{a^{672}b^{673}c^{674}}\).
Cho 2a=3b=4c và a,b,c khác 0. Tìm giá trị biểu thức của A=\(\dfrac{a+b-c}{a+2b-2c}\)
a) Tìm x biết: (3x-1)6=(3x-1)4
b. Cho a,b,c là các số khác 0 sao cho \(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\). Tính giá trị của biểu thức: M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho 3 số a, b , c > 0 thỏa mãn: \(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}\)
Chứng minh rằng a = b = c
Cho ac=b2; ab=c2; a+b+c≠0 và a,b,c là các số khác 0
Tính giá trị biểu thức: P=\(\dfrac{a^{555}}{b^{222}.c^{333}}+\dfrac{b^{555}}{c^{222}.a^{333}}+\dfrac{c^{555}}{a^{222}.b^{333}}\)
cho a, b ,c là 3 số thực khác 0 , thỏa mãn điều kiện : \(\dfrac{a+b-c}{c}=\dfrac{b+ c -a}{a}=\dfrac{c+a-b}{b}\) .
Tính giá trị biểu thức P = \( (1+ \dfrac{b}{a} )\) \( (1+ \dfrac{a}{c} )\) \((1+\dfrac{c}{b} )\)
Cho a, b, c là các số hữu tỉ khác 0, sao cho:
\(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\)
Tính giá trị bằng số của 1 biểu thức:
M=\(\dfrac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}\)
Cho 1/a+b+c =a+4b-c/c=c+4a-b/b=b+4c-a/a
Tính giá trị biểu thức P= (2+a/b)(3+b/c)(4+c/a)