chứng minh bất đẳng thức
\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)
Cho a, b, c không âm. Chứng minh \(\sqrt{\dfrac{a+2b}{3}}+\sqrt{\dfrac{b+2c}{3}}+\sqrt{\dfrac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Tìm Min và Max của hàm số sau trên R
y = f(x) =\(\sqrt{3x}+\sqrt{10-2x}\)
Cho a,b,c >0 và abc=1
\(\dfrac{\sqrt{a}}{2+b\sqrt{a}}+\dfrac{\sqrt{b}}{2+c\sqrt{b}}+\dfrac{\sqrt{c}}{2+a\sqrt{c}}\ge1\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)
Chứng minh bất đẳng thức sau:
\(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) với a>1
giải và biện luận \(\sqrt{x+a}+\sqrt{x-a}=\sqrt{2a}\)
Cho a,b,c là số thực dương. Tìm GTLN của
P=\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}+\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}+\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\)
Cho các số dương a, b, c có a + b + c = 3. Tìm GTNN của bt :
P = \(\frac{a\sqrt{a}}{\sqrt{2c+a+b}}+\frac{b\sqrt{b}}{\sqrt{2a+b+c}}+\frac{c\sqrt{c}}{\sqrt{2b+c+a}}\)