Câu 1. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 2. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 3. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 4. Tìm x, biết:
a) 16x2-(4x-5)2=15 b) (2x+1)(1-2x)+(1-2x)2=18
c) (x-5)2-x(x-4)=9 d) (x-5)2+(x-4)(1-x)=0
Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Rút gọn biểu thức:
a) A= \(\left(5a+5\right)^2+10\left(a-3\right)\left(1+a\right)+a^2-6a+9\)
b) B= \(\dfrac{\left(x-1\right)^2}{4}+x^2-1+\left(x+1\right)^2\)
Rút gọn biểu thức sau: \(\left(x-2\right)\left(x^2+2x+4\right)\left(x+2\right)\left(x^2-2x+4\right)\)
Tính giá trị của biểu thức :
a) \(A=\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\) tại \(x=-\frac{1}{6}\)
b) \(B=2.\left(x^6+y\right)-3.\left(x^4+y^4\right)\)tại \(x^2+y^2=1\)
Tính giá trị của biểu thức :
a) \(A=\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\) tại \(x=-\frac{1}{6}\)
b) \(B=2.\left(x^6+y\right)-3.\left(x^4+y^4\right)\)tại \(x^2+y^2=1\)
Viết các biểu thức sau dưới dạng tổng:
a)\(\left(a-b^2\right)\left(a+b^2\right)\) c)\(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
b)\(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\) d)\(\left(a^2-2a+3\right)\left(a^2+2a-3\right)\)
e)\(\left(-a^2-2a+3\right)\left(-a^2-2a+3\right)\) f)\(\left(a^2+2a+3\right)\left(a^2-2a+3\right)\)
g)\(\left(a^2+2a\right)\left(2a-a^2\right)\)
Thu gọn biểu thức :
1, \(\left(x+5\right)\cdot\left(x^2-5x+25\right)-\left(x-2\right)\cdot\left(x^2+2x+4\right)\)
2, \(\left(2x-3\right)\cdot\left(4x^2+6x+9\right)-\left(2x+1\right)^3\)
Rút gọn biểu thức (x+4)^2-(x+1)(x-1)