Cho tam giác ABC có AB=3, AC=7, BC=8.
a) tính diện tích tam giác ABC.
b) Tính bán kính đường tròn nội tiếp, ngoại tiếp của tam giác.
c) Tính đường cao kẻ từ đỉnh A.
cho hình vuông ABCD cạnh a . G ọi N là trung điểm của CD , M là điểm trên AC sao cho AM = \(\frac{1}{4}\) AC : a) tính các cạnh của tam giác BMN ; b) có nhận xét gì về tam giác BMN ? tính diện tích tam giác đó ; c) gọi I là giao điểm của BN và AC , tính CI ; d) tính bán kính đường tròn ngoại tiếp tam giác BDN
gọi H là trực tâm của tam giác không vuông ABC . Chứng minh rằng bán kính các đường tròn ngoại tiếp các tam giác ABC , HBC . HCA . HAB bằng nhau
a) Tính GTLN của : \(\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
b) Cho tam giác cân có cạnh đáy là 24, cạnh bên là 20. Tính độ dài đường cao ứng với cạnh bên của tam giác trên
c) Cho tam giác ABC có AB = 48, AC = 14, BC = 50. Tính độ dài đường trung tuyến AM của tam giác
Cho tam giác abc có bc=a;ac=b;ab=c ;I là tâm đường tròn nội cmt aIA^2+b×IB^2+c
cho 2 đường tròn ( O ; R ) và ( O1 ; R1 ) cắt nhau tại 2 điểm A và B . Trên đường thẳng AB , lấy điểm C ở ngoài 2 đường tròn và kẻ 2 tiếp tuyến CE , CF đến 2 đường tròn đó ( E , F là các tiếp điểm ) . Chứng minh rằng CE = CF
1) Cho tam giác ABC vuông tại A có BC = \(a\sqrt{3}\). Vẽ trung tuyến AM. Biết \(\overrightarrow{AM}.\overrightarrow{BC}=\frac{a^2}{2}\). AB = ?
A. a B. \(\frac{a}{2}\) C. \(a\sqrt{2}\) D. \(\frac{a\sqrt{3}}{6}\)
2) Cho tam giác ABC biết \(\overrightarrow{BC}.\overrightarrow{BA}=AB^2\). ABC là tam giác :
A. đều B. nhọn C. tù D. vuông
3) Tìm GTNN của : \(\frac{9}{x}+\frac{4}{2-x}\)
(Ghi cách giải 3 câu ln nka)
.Cho tam giác ABC có A(4;3) , B(0; 5) , C(6; 2) .
a) Chứng minh :ABC vuông tại B . Tính diện tích tam giác ABC.
b) Tìm tọa độ điểm K là chân đường cao kẻ từ B của tam giác ABC.
c) Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
d) Tìm tọa độ điểm J là tâm đường tròn nội tiếp tam giác ABC.
Cho tam giác ABC không cân. Đường tròn tâm I nội tiếp tam giác , tiếp xúc với các cạnh BC, CA, AB lần lượt tại A', B', C' . Đường thằng B'C' cắt BC tại D. Chứng minh ID vuông góc với AA'