\(5-\sqrt{x^2-6x+14}=5-\sqrt{x^2-6x+9+5}\)
\(=5-\sqrt{\left(x-3\right)^2+5}\le5-\sqrt{5}\)
\(Max=5-\sqrt{5}\Leftrightarrow x=3\)
ta có : \(\sqrt{x^2-6x+14}=\sqrt{\left(x-3\right)^2+5}\) ≥ \(\sqrt{5}\) ( vì \(\left(x-3\right)^2\) ≥ 0 với mọi x )
=> \(-\sqrt{x^2-6x+14}\) ≤ \(-\sqrt{5}\)
=> \(5-\sqrt{x^2-6x+14}\) ≤ \(5-\sqrt{5}\)
vậy GTLN = \(5-\sqrt{5}\) ; đạt được khi \(x-3\) = 0
<=> x = 3
*mik hongg bt đúng hongg nx :>*