Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Đức Anh

Gpt: \(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16\)

Trần Minh Hoàng
31 tháng 12 2020 lúc 22:49

ĐKXĐ: \(-1\le x\le1\).

Đặt \(x^2=a\left(0\le a\le1\right)\).

PT đã cho được viết lại thành:

\(13\sqrt{a-a^2}+9\sqrt{a+a^2}=16\).

Áp dụng bất đẳng thức AM - GM cho hai số thực không âm ta có:

\(a+4\left(1-a\right)\ge2\sqrt{a.4\left(1-a\right)}\)

\(\Rightarrow\sqrt{a-a^2}\le1-\dfrac{3}{4}a\)

\(\Rightarrow13\sqrt{a-a^2}\le13-\dfrac{39}{4}a\); (1)

\(a+\dfrac{4}{9}\left(a+1\right)\ge2\sqrt{a.\dfrac{4}{9}\left(a+1\right)}\)

\(\Rightarrow\sqrt{a\left(a+1\right)}\le\dfrac{13}{12}a+\dfrac{1}{3}\)

\(\Rightarrow9\sqrt{a+a^2}\le\dfrac{39a}{4}+3\). (2)

Cộng vế với vế của (1), (2) ta có \(13\sqrt{a-a^2}+9\sqrt{a+a^2}\le16\).

Mặt khác từ pt đã cho ta có đẳng thức phải xảy ra.

Do đó đẳng thức ở (1) và (2) cũng xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}a=4\left(1-a\right)\\a=\dfrac{2}{3}\left(1+a\right)\end{matrix}\right.\Leftrightarrow a=\dfrac{4}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{4}{5}}\) (TMĐK).

Vậy...

 

 


Các câu hỏi tương tự
Nguyễn Thị Minh Ngọc
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
poppy Trang
Xem chi tiết
Quang Huy Điền
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Curry
Xem chi tiết
Sakura
Xem chi tiết