Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=-\frac{3m}{2}\\x_1x_2=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(P=\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1+x_2+x_1x_2\left(x_1+x_2\right)}{x_1x_2}\right)^2\)
\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{-\frac{3m}{2}-\frac{\sqrt{2}}{2}\left(-\frac{3m}{2}\right)}{-\frac{\sqrt{2}}{2}}\right)^2\)
\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{27-8\sqrt{2}}{4}\right)m^2\)
\(P=\left(\frac{18-9\sqrt{2}}{2}\right)m^2+2\sqrt{2}\ge2\sqrt{2}\)
\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(m=0\)