Lời giải:
\(\lim\limits _{x\to 0}\frac{(x+a)^3-a^3}{x}=\lim\limits _{x\to 0}\frac{x[(x+a)^2+a(x+a)+a^2]}{x}=\lim\limits _{x\to 0}[(x+a)^2+a(x+a)+a^2]\)
\(=3a^2\)
Để \(\lim\limits _{x\to 0}\frac{(x+a)^3-a^3}{x}=a\) \(\Leftrightarrow 3a^2=a\)
\(\Leftrightarrow 3a^2-a=0\Leftrightarrow a=0; a=\frac{1}{3}\) (có 2 giá trị thực của a)
Đáp án A.