Cho hình chóp S.ABCD có SA ⊥ ABC . Tam giác ABC vuông tại B. Gọi H là hình chiếu của A trên SB, trong các khẳng định sau khẳng định nào là đúng:
(1) AH vuông góc SC
(2) BC Vuông góc (SAB)
(3) SC vuông góc SC
có bao nhiêu khẳng định đúng
A 1
B2
C3
D 0
cho tam giác ABC vuông tại B lấy một điểm S bất kì trên đường thẳng vuông góc với (ABC) kẻ từ A (S khác A) gọi B1 C1 lần lượt là hình chiếu của điểm A trên SB, SC chứng minh rằng khi S thay đổi thì :
a, Giao tuyến của mp (ABC) và mp (AB1C1) là đường thẳng cố định và là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
b, Đường thẳng B1C1 đi qua điểm cố định I và góc IAB= góc ICA
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau, OA=OB=OC = x Gọi H là trực tâm tam giác ABC. M,N lần lượt là trung điểm OB,BC. G là trọng tâm tam giác OBC. P thuộc cạnh AC sao cho PA = 2PC Đặt OA= vecto a, OB= vecto b, OC= vecto c a). Hãy biểu diễn các vecto MG, PN theo a, b, c b) Tính góc giữa hai đường thàng MP và CN. c) Chứng minh rằng OH vuông góc HB
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A AB = SA = SB =SC = 2. Tính góc giữa hai đường thẳng AB và SC.
cho hình chóp SABCD có SA vuông góc (ABCD), ABCD là hình vuông
a.cm: BD vuông góc (SAC)
b.cm: tam giác SBC, tam giác SCD vuông
c.H là chân đường cao kẻ từ A lên SB. cm AH vuông góc (SBC)
Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = SD GỌI O LÀ tâm của hình thoi và SO =a√3/4 góc ABC bằng 60 độ a. Tính diện tích đáy ABCD b.tính thể tích hình chóp SABCD
Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi G và H theo thứ tự là trọng tâm và trực tâm của tam giác. Chứng minh rằng
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
Từ đó chứng minh G,H, O thẳng hàng.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh, tam giác SAB cân tại S. SA=SB=2a, (SAB) \(\perp\) (ABCD)
a, Tính (SD,(ABCD))
b, (SH, (SCD)) với H là trung điểm của
c, (SC, (SAB))
d, (SA, (SBC))
Cho hình chóp S.ABC có SA vuông góc với đáy, SA=2a, SA vuông góc với đáy, gọi H, K lần lượt là hình chiếu vuông góc của A trên SB, SC; biết tam giác ABC đều cạnh a. Xác định góc giữa các mặt phẳng : (SBC) và (SAC)