a) Tam giác ABC cân nên hai góc đáy bằng nhau : Góc ACB = Góc ABC
Ta lại có : Góc ABM = 180° - Góc ABC , Góc ACN = 180° - Góc ACB
Vậy Góc ABM = Góc ACN
Xét hai tam giác ABM và CAN , ta có :
AB = AC (gt)
Góc ABM = Góc ACN (cmt)
BM = CN (gt)
=> Tam giác ABM = tam giác CAN => AM = AN
Vậy tam giác AMN cân tại A
b) Vì tam giác AMN cân => Góc AMB = Góc ANC
Xét tam giác MHB và tam giác CKN
Ta có : Góc MHB = Góc CKN ( Góc vuông )
Góc AMB = Góc ANC (cmt)
MB = CN (cmt)
=> tam giác MHB = tam giác NKC (g-c-g)
=> BH = CK
c) Vì tam giác HBM = tam giác KCN (Câu b) nên HM=KN (cạnh tương ứng)
Lại có: HM+HA=AM ; KN+KA=AN
Vì AM=AN (tam giác AMN cân tại A), HM=KN nên AH=AK
d) Tam giác ABM = Tam giác CKN => Góc HBM = Góc KCN
Góc CBO = Góc HBM và Góc KCN = Góc BCO ( đối đỉnh )
=> OBC là tam giác cân tại O
e) Khi BAC = 60° => Tam giác ABC đều
ta suy ra BM = AB => Tam giác ABM cân đỉnh B . Ta có Góc AMB = 1/2 ABC = 1/2 . 60 = 30°
Làm tương tự cho góc kia thì ANM = 30°
Góc A = 180 - 30° - 30° = 120°
Góc KCN = Góc BCO =60°