\(A=3x^2-14x^2+4x+3\)
Giả sử:
\(A=\left(3x+a\right)\left(x^2+bx+c\right)\)
\(=3x^3+3bx^2+3cx+ax^{2\:}+abx+ac\)
\(=3x^3+\left(3b+a\right)x^2+\left(3c+ab\right)x+ac\)
Ta có:
\(\begin{cases}3b+a=-14\\3c+ab=4\\ac=3\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=-5\\c=3\end{cases}\)
Vậy \(A=\left(3x+1\right)\left(x^2-5x+3\right)\)