Đặt (P) : y = ax2
(P') : y = ax2+bx+c
Ta có : (P') : \(y=ax^2+bx+c=a\left(x^2+\frac{2.x.b}{2a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}\right)+c\)
\(=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\)
Đặt \(p=\frac{b}{2a}\) , \(q=-\frac{b^2-4ac}{4a}\) thì khi đó
\(\left(P'\right):y=a\left(x+p\right)^2+q\)
Điều này có nghĩa là ta tịnh tiến (P) sang phải p đơn vị , tịnh tiến lên trên q đơn vị thì được (P') => (P') thực chất là "phép tịnh tiến" của (P)
Từ đó bạn rút ra được điều phải chứng minh nhé!
Cách chứng minh trong SGK có viết rất rõ rồi , bạn tham khảo nhé !