Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=2\\x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=2\\3x=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}mx+y=1\\x+my=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=1-mx\\x+m\left(1-mx\right)=1\left(1\right)\end{matrix}\right.\)
(1) ⇔x+m-m2x=1
⇔x(1-m2)=1-m (2)
TH1: 1-m2 = 0
⇔m = +- 1
Thay m=1 vào (2) ta có: 0x=0 (Luôn đúng) ⇒m=1 (chọn)
Thay m=-1 vào (2) ta có: 0x=2 (Vô lí) ⇒m=-1 (loại)
TH2: 1-m2 ≠0
⇔m≠ +-1
⇒HPT có nghiệm duy nhất:
x= \(\dfrac{1-m}{1-m^2}\)
⇒y= \(1-m.\dfrac{1-m}{1-m^2}\)
⇔y=\(\dfrac{1-m}{1-m^2}\)
Dễ thấy x=y nên:
\(\dfrac{1-m}{1-m^2}>0\)
⇔1-m>0
⇔m<1
Vậy m <1 thì Thỏa mãn yêu cầu đề bài.
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=1\\2x+4y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=1-y=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)