a/ \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{x^2-1}-2}{x-3}+\lim\limits_{x\rightarrow3}\dfrac{2-\sqrt[4]{1+5x}}{x-3}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{x^2-1-8}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{16-1-5x}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4.\sqrt[3]{1+5x}+8\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{-5\left(x-3\right)}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4\sqrt[3]{1+5x}+8\right)}\)
\(=\dfrac{3+3}{\sqrt[3]{\left(3^2-1\right)^2}+2.\sqrt[3]{3^2-1}+4}-\dfrac{5}{\sqrt[4]{\left(1+5.3\right)^3}+2\sqrt[3]{\left(1+5.3\right)^2}+4.\sqrt[3]{1+5.3}+8}=\dfrac{11}{32}\)
\(\Rightarrow a^2+b^2=1145\)
40/
\(L=\lim\limits_{x\rightarrow0}\dfrac{af\left(x\right)+b^n-b^n}{f\left(x\right)\left[\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+....+b^{n-1}\right]}\)
\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+...+b^{n-1}}\)
\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{b^{n-1}+b^{n-1}++...+b^{n-1}}=\dfrac{a}{nb^{n-1}}\)
40/
\(\sqrt{1+ax}.\sqrt[3]{1+bx}+\sqrt[4]{1+cx}-1=\left(\sqrt{1+ax}-1\right)+\sqrt{1+ax}\left(\sqrt[3]{1+bx}-1\right)+\sqrt{1+ax}.\sqrt[3]{1+bx}.\left(\sqrt[4]{1+cx}-1\right)\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+ax}-1}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+ax}\left(\sqrt[3]{1+bx}-1\right)}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+ax}.\sqrt[3]{1+bx}\left(\sqrt[4]{1+cx}-1\right)}{x}\)
\(I_1=\lim\limits_{x\rightarrow0}\dfrac{1+ax-1}{x\left(\sqrt{1+ax}+1\right)}=\dfrac{a}{\sqrt{1+ax}+1}=\dfrac{a}{2}\)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+ax}\left(1+bx-1\right)}{x\left(\sqrt[3]{\left(1+bx\right)^2}+\sqrt[3]{1+bx}+1\right)}=\dfrac{b\sqrt{1+ax}}{\sqrt[3]{\left(1+bx\right)^2+\sqrt[3]{1+bx}+1}}=\dfrac{b}{3}\)
\(I_3=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+ax}\sqrt[3]{1+bx}\left(1+cx-1\right)}{x\left(\sqrt[4]{\left(1+cx\right)^3}+\sqrt[3]{\left(1+cx\right)^2}+\sqrt[3]{1+cx}+1\right)}=\dfrac{c}{4}\)
\(\Rightarrow L=\dfrac{a}{2}+\dfrac{b}{3}+\dfrac{c}{4}\)
P/s: Thông cảm mình đang đau đầu nên làm hơi lâu :b