Nếu \(n\ne1\) ta có:
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+mx+8}+nx\right)=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{1+\dfrac{m}{x}+\dfrac{8}{x^2}}+n\right)=-\infty.\left(n-1\right)=\infty\) không phải 1 giá trị hữu hạn (ktm)
\(\Rightarrow n=1\)
Khi đó:
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+mx+8}+x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{mx+8}{\sqrt{x^2+mx+8}-x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{m+\dfrac{8}{x}}{-\sqrt{1+\dfrac{m}{x}+\dfrac{8}{x^2}}-1}=\dfrac{m}{-2}=-\dfrac{m}{2}=4\)
\(\Rightarrow m=-8\)
\(\Rightarrow m+n=-8+1=-7\)