Chương 2: TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 17:43

a.

Áp dụng định lý hàm cos:

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\sqrt{19}\)

Áp dụng công thức trung tuyến:

\(AM=\sqrt{\dfrac{2\left(AB^2+AC^2\right)-BC^2}{4}}=\dfrac{\sqrt{7}}{2}\)

b.

\(2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\Leftrightarrow2\overrightarrow{IB}+2\overrightarrow{BA}+\overrightarrow{IB}=\overrightarrow{0}\Leftrightarrow\overrightarrow{IB}=\dfrac{2}{3}\overrightarrow{AB}\Rightarrow\overrightarrow{BI}=-\dfrac{2}{3}\overrightarrow{AB}\)

\(\overrightarrow{JB}-2\overrightarrow{JC}=\overrightarrow{0}\Rightarrow\overrightarrow{JB}=2\overrightarrow{JC}=2\overrightarrow{JB}+2\overrightarrow{BC}\Rightarrow\overrightarrow{JB}=-2\overrightarrow{BC}\Rightarrow\overrightarrow{BJ}=2\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{BI}.\overrightarrow{BJ}=-\dfrac{2}{3}\overrightarrow{AB}.2\overrightarrow{BC}=-\dfrac{4}{3}\overrightarrow{AB}.\overrightarrow{BC}=-\dfrac{4}{3}\overrightarrow{AB}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{4}{3}AB^2-\dfrac{4}{3}\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{4}{3}.2^2-\dfrac{4}{3}.2.3.cosA=\dfrac{28}{3}\)

 

Nguyễn Việt Lâm
8 tháng 12 2021 lúc 17:45

Độ dài IJ:

Ta có: \(\overrightarrow{BI}=-\dfrac{2}{3}\overrightarrow{AB}\Rightarrow BI=\dfrac{2}{3}AB=\dfrac{4}{3}\)

\(\overrightarrow{BJ}=2\overrightarrow{BC}\Rightarrow BJ=2BC=2\sqrt{19}\)

Từ đó:

\(IJ^2=\overrightarrow{IJ}^2=\left(\overrightarrow{IB}+\overrightarrow{BJ}\right)^2=IB^2+BJ^2+2\overrightarrow{IB}.\overrightarrow{BJ}\)

\(=IB^2+BJ^2-2\overrightarrow{BI}.\overrightarrow{BJ}\)

\(=\left(\dfrac{4}{3}\right)^2+\left(2\sqrt{19}\right)^2-2.\dfrac{28}{3}=...\)


Các câu hỏi tương tự
Nguyễn Thị Quỳnh Anh
Xem chi tiết
Vũ Thu Trang
Xem chi tiết
trung Nguyễn
Xem chi tiết
trung Nguyễn
Xem chi tiết
trung Nguyễn
Xem chi tiết