Cho tứ giác ABCD .Gọi M,N,I,J lần lượt là trung điểm của các cạnh AD,BC,AC và BD.Chứng minh rằng: a) vecto AB+DC =2MN b) vecto AB-DC=2IJ c) vecto NA+ND=BA+CD d) vecto MA+IJ=NB
Cho tứ giác ABCD.Gọi E,F lần lượt là trung điểm của các cạnh AB,CD ; G là trung điểm của EF.CM rằng: a) vecto AB+AC+AD=4AG b) vecto GA+GB+GC+GD=0 c)vecto OG=1/4(OA+OB+OC+OD), với O là điểm tùy ý
cho hình bình hành ABCD. gọi M là trung điểm của cd. trên đoạn BM lấy điểm N sao cho BN=2MN. cmr : 3 vectơ AB + 4 vectơ CD = vectơ CM + vectơ ND+ vectơ MN
Cho 4 điểm A,B,C,D. Tìm các vectơ sau:
a/ p= AB-CD+BD-AC
b/ q= AB+CD-CB-AD
Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm của AB, CD và O là trung điểm cừa. Chứng minh rằng: vectơ OA+OB+OC+OD= vectơ 0
Giải chi tiết giúp e với ạ e đang cần gấp ạ
Cho tứ giác ABCD có I;J;K;L lần lượt là trung điểm của AB;BC ;CD;DA. Biểu diễn vectơ LJ Theo hai véc tơ JI ; véctơ JK . jup em vs ạ
Cho hình thang vuông ABCD có A=D=90\(^o\) . Biết AB=AD=a, C=45\(^o\). Tính |\(\overrightarrow{CD}\)|,
|\(\overrightarrow{BD}\)|.
Cho lục giác đều ABCDEF .Gọi O là giao điểm của AD và BE.TÌm các vectơ khác vectơ 0:
a)bằng với vectơ AB
b) cùng phương với vectơ AD
c) đối với vecto BC
Cho hình vuông ABCD cạnh a, tâm O. Tính độ dài của các vectơ \(\overrightarrow{AB}+\overrightarrow{AD}\) , \(\overrightarrow{AB}+\overrightarrow{AC}\) , \(\overrightarrow{AB}-\overrightarrow{AD}\)