4a.
\(y=2x^2-tanx\Rightarrow y'=\left(2x^2\right)'-\left(tanx\right)'=4x-\dfrac{1}{cos^2x}\)
b.
\(y'=\left(3tan\left(x+\dfrac{\pi}{3}\right)\right)'-\left(4sinx\right)'=3\left(x+\dfrac{\pi}{3}\right)'.\dfrac{1}{cos^2\left(x+\dfrac{\pi}{3}\right)}-4cosx\)
\(=\dfrac{3}{cos^2\left(x+\dfrac{\pi}{3}\right)}-4cosx\)
5a.
\(y'=\left(2x\right)'-\left(3sinx\right)'+\left(2cotx\right)'=2-3cosx-\dfrac{2}{sin^2x}\)
b.
\(y'=\left(cot\left(3x+\dfrac{\pi}{6}\right)\right)'-\left(4cosx\right)'=\left(3x+\dfrac{\pi}{6}\right)'.\dfrac{-1}{sin^2\left(3x+\dfrac{\pi}{6}\right)}+4sinx\)
\(=-\dfrac{3}{sin^2\left(3x+\dfrac{\pi}{6}\right)}+4sinx\)