Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Thanh Nhung

Giari phương trình

\(\sqrt{6x^2-12x+7}\) = x2 -2x

\(\sqrt{x^2-4x+5}\) =2x2-8x

help me

Trương Thị Hải Anh
6 tháng 12 2018 lúc 19:57

\(\sqrt{6x^2-12x+7}=x^2-2x\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=\dfrac{6x^2-12x+7-7}{6}\left(1\right)\)

Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t=\dfrac{t^2}{6}-\dfrac{7}{6}\)

\(\Leftrightarrow t^2-6t-7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=7\left(TM\right)\\t=-1\left(loại\right)\end{matrix}\right.\)

t=7\(\Rightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\)

\(\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\left(TM\right)\\x=1-2\sqrt{2}\left(TM\right)\end{matrix}\right.\)

Trương Thị Hải Anh
6 tháng 12 2018 lúc 20:24

\(\sqrt{x^2-4x+5}=2x^2-8x\)

\(\Leftrightarrow\sqrt{x^2-4x+5}=2\left(x^2-4x+5\right)-10\)(1)

đặt \(t=\sqrt{x^2-4x+5}\) (t\(\ge\)0)

\(\left(1\right)\Leftrightarrow t=2t^2-10\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(loại\right)\\t=\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+5}=\dfrac{5}{2}\)

\(\Leftrightarrow x-4-\dfrac{5}{4}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{21}}{2}\left(TM\right)\\x=\dfrac{4-\sqrt{21}}{2}\left(TM\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Minh Chiến
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Nguyễn Nguyên
Xem chi tiết
Nhan Thị Thảo Vy
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Julian Edward
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết