ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{1-cosx.cos2x-2sinx}{sin2x}=1-sinx-2cos2x\)
\(\Leftrightarrow1-cosx.cos2x-2sinx=sin2x-sinx.sin2x-2cos2x.sin2x\)
\(\Leftrightarrow1-2sinx=sin2x+\left(cos2x.cosx-sin2x.sinx\right)-sin4x\)
\(\Leftrightarrow1-2sinx=sin2x+cos3x-sin4x\)
\(\Leftrightarrow1-2sinx=cos3x-2cos3x.sinx\)
\(\Leftrightarrow1-2sinx=cos3x\left(1-2sinx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)