Lời giải
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)
(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)
\(\Leftrightarrow8x^2+14mx+3m^2=0\)
\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m
\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)
so sánh (3) với (1)
\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)
m <0 hiển nhiên đúng
xét khi m\(\ge\)0
\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)
Biện luận
(I)với m <0 có hai nghiệm
\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)
(II) với m= 0 có nghiệm kép x=0
(III) m>0 vô nghiệm
b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).
c) \(mx^2+\left(2m-1\right)x+m-2=0\)
- Với m = 0 phương trình trở thành:
\(0.x^2+\left(2.0-1\right)x+0-2=0\)\(\Leftrightarrow-x-2=0\)\(\Leftrightarrow x=-2\)
- Xét \(m\ne0\)
\(\Delta=\left(2m-1\right)^2-4m.\left(m-2\right)=4m+1\)
Nếu \(4m+1>0\Leftrightarrow m>\dfrac{-1}{4}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\);
\(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
Nếu \(4m+1=0\Leftrightarrow m=\dfrac{-1}{4}\) phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-1\right)}{2m}=\dfrac{-\left(2.\dfrac{-1}{4}-1\right)}{2.\dfrac{-1}{4}}=-3\)
Nếu \(4m+1< 0\Leftrightarrow m< \dfrac{-1}{4}\) phương trình vô nghiệm.
Biện luận:
\(m=0\) phương trình có một nghiệm là x = -2.
\(m\ge\dfrac{-1}{4}\) và \(m\ne0\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\); \(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
\(m\le\dfrac{-1}{4}\) phương trình có nghiệm kép:\(x_1=x_2=3\)
d) Đkxđ: \(\left\{{}\begin{matrix}4x-2\ge0\\2x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{2}\)
\(\dfrac{\sqrt{4x-2}}{2x-1}=m-1\Leftrightarrow\dfrac{\sqrt{2\left(2x-1\right)}}{2x-1}=m-1\)
\(\Leftrightarrow\dfrac{\sqrt{2}}{\sqrt{2x-1}}=m-1\) \(\Leftrightarrow\sqrt{\dfrac{2}{2x-1}}=m-1\) (*)
Nếu \(m-1< 0\Leftrightarrow m< 1\) phương trình (*) vô nghiệm.
Nếu \(m-1\ge0\Leftrightarrow m\ge1\) bình phương hai vế của (*) ta được:
\(\dfrac{2}{2x-1}=\left(m-1\right)^2\Leftrightarrow\left(m-1\right)^2\left(2x-1\right)=2\)
\(\Leftrightarrow2x\left(m-1\right)^2=2+\left(m-1\right)^2\)
Với \(m=1\) pt \(\Leftrightarrow0=2\) (vô lý)
Với \(m>1\) pt \(\Leftrightarrow x=\dfrac{2+\left(m-1\right)^2}{2\left(m-1\right)^2}\)
Để \(x=\dfrac{2+\left(m-1\right)^2}{2\left(m-1\right)^2}\) là nghiệm của phương trình thì:
\(\dfrac{2+\left(m-1\right)^2}{2\left(m-1\right)^2}>\dfrac{1}{2}\Leftrightarrow\dfrac{2+\left(m-1\right)^2}{\left(m-1\right)^1}>1\) (luôn đúng)
Biện luận:
Với \(m\le1\) phương trình vô nghiệm.
Với \(m>1\) phương trình có duy nhất nghiệm là: \(x=\dfrac{2+\left(m-1\right)^2}{2\left(m-1\right)^2}\)