\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{18^2+20^2-14^2}{2\times18\times20}=\dfrac{11}{15}\)
\(\Rightarrow\widehat{A}\approx43^o\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{14^2+20^2-18^2}{2\times14\times20}=\dfrac{17}{35}\)
\(\Rightarrow\widehat{B}\approx61^o\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}=180^0-61^o-43^o=76^o\)