Đặt \(t=1-\sqrt{x}\left(t\ge0\right)\)
\(\Rightarrow\left(1-t\right)^2-\left(t-2015\right)\left(1-\sqrt{t}\right)^2=0\\ \Leftrightarrow\left(1-\sqrt{t}\right)^2\left(1+\sqrt{t}\right)^2+\left(t-2015\right)\left(1-\sqrt{t}\right)^2=0\\ \Leftrightarrow\left(1-\sqrt{t}\right)^2\left(1+2\sqrt{t}+t+t-2015\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=1\\t+\sqrt{t}-1007=0\end{matrix}\right.\Rightarrow t=1,t=\dfrac{2015}{2}-\dfrac{\sqrt{4029}}{2}\left(loai\right)\)
Vậy \(x=0\)