Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vương Tuấn Khải

giải pt \(x^3+\sqrt{\left(1-x^2\right)^3}=x\sqrt{2\left(1-x^2\right)}\)

Nguyễn Việt Lâm
9 tháng 11 2019 lúc 6:19

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=a\ge0\) ta được:

\(\left\{{}\begin{matrix}x^2+a^2=1\\x^3+a^3=\sqrt{2}ax\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+a^2=1\\\left(x+a\right)\left(x^2+a^2-ax\right)=\sqrt{2}ax\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+a^2=1\\\left(x+a\right)\left(1-ax\right)=\sqrt{2}ax\end{matrix}\right.\)

Đặt \(x+a=t\Rightarrow x^2+a^2+2ax=t^2\Rightarrow ax=\frac{t^2-1}{2}\)

\(\Rightarrow t\left(1-\frac{t^2-1}{2}\right)=\sqrt{2}\left(\frac{t^2-1}{2}\right)\)

\(\Leftrightarrow t^3+\sqrt{2}t^2-3t-\sqrt{2}=0\)

\(\Leftrightarrow\left(t-\sqrt{2}\right)\left(t^2+2\sqrt{2}t+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\\t=1-\sqrt{2}\\t=-1-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+\sqrt{1-x^2}=\sqrt{2}\\x+\sqrt{1-x^2}=-1-\sqrt{2}\left(l\right)\\x+\sqrt{1-x^2}=1-\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1-x^2}=\sqrt{2}-x\\\sqrt{1-x^2}=1-\sqrt{2}-x\left(x\le1-\sqrt{2}\right)\\\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x^2=\left(\sqrt{2}-x\right)^2\\1-x^2=\left(1-\sqrt{2}-x\right)^2\end{matrix}\right.\) \(\Leftrightarrow...\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
oooloo
Xem chi tiết
Yến Chi
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Julian Edward
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
DRACULA
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Julian Edward
Xem chi tiết
Đức Mai Văn
Xem chi tiết