\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\\ \Leftrightarrow\left(x^2+1\right)-9+3\left(x+3\right)-\left(x+3\right)\sqrt{x^2+1}=0\\ \Leftrightarrow\left(\sqrt{x^2+1}+3\right)\left(\sqrt{x^2+1}-3\right)-\left(x+3\right)\left(\sqrt{x^2+1}-3\right)=0\\ \Leftrightarrow\left(\sqrt{x^2+1}+3-x-3\right)\left(\sqrt{x^2+1}-3\right)=0\\ \Leftrightarrow\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}-3\right)=0\\ \Leftrightarrow\left(\sqrt{x^2+1}-\sqrt{x^2}\right)\left(\sqrt{x^2+1}-3\right)=0\\ \Leftrightarrow\sqrt{x^2+1}-3=0\left(Vì\text{ }\sqrt{x^2+1}-\sqrt{x^2}\ne0\right)\\ \Leftrightarrow\sqrt{x^2+1}=3\\ \Leftrightarrow x^2+1=9\\ \\ \Leftrightarrow x^2=8\\ \Leftrightarrow x=2\sqrt{2}\)Vậy pt có nghiệm \(x=2\sqrt{2}\)