Giải các pt sau:
1, \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
2, \(2x^2+2x+6=2x\sqrt{x^2-x+1}+4\sqrt{3x+1}\)
3, \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
4, \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2-2x+3}+\sqrt{x^2-x+2}\)
5, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)
Giải phương trình :
1. \(x^2-3x-10+3\sqrt{x\left(x-3\right)}=0\)
2. \(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(2-\sqrt{x-1}\right)^2}=5\)
Giải pt \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
giải pt vô tỉ sau
\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
Câu 1 . Cho \(a,b\ge3.\) Chứng minh rằng
\(A=21\left(a+\dfrac{1}{b}\right)+3\left(b+\dfrac{1}{a}\right)\ge80\)
Câu 2. Giải phương trình :
\(x^2+6x-1=2\sqrt{5x^3-3x^2+3x-2}\)
Câu 3. Tìm GTNN của
\(Q=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Câu 4 . Giải phương trình
\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)
Giải các phương trình sau:
\(2\sqrt{\left(x-2\right)\left(7-x\right)}-\sqrt{x-2}-\sqrt{7-x}=3\)
\(\dfrac{3x}{\sqrt{3x+10}}+1=\sqrt{3x+1}\)
\(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)
Rút gọn biểu thức \(\dfrac{\sqrt{3x^2-12x+12}-x+2}{x-2}\) khi x>2 được kết quả là:
A. \(1-\sqrt{3}\)
B. \(\sqrt{3}.\left(x-2\right)\)
C. \(\sqrt{3}-1\)
D. \(-\sqrt{3}.\left(x-2\right)\)
giải pt vô tỉ sau bằng phương pháp đặt ẩn phụ
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
b)\(\sqrt[3]{x+5}+\sqrt[3]{4-x}=\sqrt[3]{x+24}\)
Giải phương trình
a, \(\sqrt{x^2-x+9}=2x+1\)
b. \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)
c. \(x^2-3x-10+3\sqrt{x.\left(x-3\right)}=0\)
d. \(\sqrt{2-x}+\sqrt{4-x}=x^2-6x+11\)
e. \(x+6\sqrt{x+8}+4\sqrt{6-2x}=27\)