\(ĐKXĐ:x\ge8\)
Ta có: \(pt\Leftrightarrow x+1=3\sqrt{x}+\sqrt{x-8}\)
Áp dụng bđt AM-GM:
\(3\sqrt{x}\le\frac{x+9}{2}\)
\(\sqrt{x-8}=\sqrt{1\left(x-8\right)}\le\frac{x-7}{2}\)
Cộng vế:
\(3\sqrt{x}+\sqrt{x-8}\le x+1."="\Leftrightarrow x=9\)
\(ĐKXĐ:x\ge8\)
Ta có: \(pt\Leftrightarrow x+1=3\sqrt{x}+\sqrt{x-8}\)
Áp dụng bđt AM-GM:
\(3\sqrt{x}\le\frac{x+9}{2}\)
\(\sqrt{x-8}=\sqrt{1\left(x-8\right)}\le\frac{x-7}{2}\)
Cộng vế:
\(3\sqrt{x}+\sqrt{x-8}\le x+1."="\Leftrightarrow x=9\)
giải pt: \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
Giải PT :\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Giải PT: \(\sqrt{x+5}+\sqrt{3-x}-2.\left(\sqrt{15-2x-x^2}+1\right)=0\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
Giải pt: \(\left(3\sqrt{x}+\sqrt{x+8}\right)\left(4+3\sqrt{x^2+8x}\right)=16\left(x-1\right)\)
giải pt
\(x\sqrt{x+\sqrt{3}}=\sqrt{\frac{8}{3\sqrt{3}}-x}\)
giải pt \(\sqrt{x}-\sqrt{x-1}-\sqrt{x-4}+\sqrt{x-9}=0\)
giải pt \(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)
Giải pt:
\(\sqrt{x-1}+\sqrt{x+7}+x^2-3x-2=0\)