ta đặt: \(\sqrt[3]{x+5}=u\)
\(\sqrt[3]{x+6}=v\)
ta có \(u^3+v^3=2x+11\)
=> \(u+v=\sqrt[3]{u^3+v^3}\)
=>\(\left(u+v\right)^3=u^3+v^3+3uv\left(u+v\right)=u^3+v^3\)
=> \(3uv\left(u+v\right)=3uv\sqrt[3]{u^3+v^3}=0\)
<=> \(3\sqrt[3]{x+5}\sqrt[3]{x+6}\sqrt[3]{2x+11}=0\)
<=> x=-5 hoặc x=-6 hoặc x=-11/2
vậy pt có 3 nghiệm ....