1.Giải pt :\(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)
Tìm m để pt sau có nghiệm :
\(\sqrt{\left(1+2x\right)\left(3-x\right)}=2x^2-5x+3+m\)
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
Giải pt (đặt t)
\(2x^2-10x+3\sqrt{x^2-5x+3}=-1\)
\(3\sqrt{5x+1}-3\sqrt{4-x}-3x^2+5x+3=0\)
a) \(\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=3x^3-10x^2-7x+30\)
b) \(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}=2x+1\)
c) \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
1)\(\sqrt{4+2x-x^2}=x-2\)
2)\(\sqrt{25-x^2}=x-1\)
3)(x+4).\(\sqrt{10-x^2}=x^2+2x-8\)
4)(x-3).\(\sqrt{x^2-3x+2}=x^2-8x+15\)
5)\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x-6\sqrt{x-1}+8}=1\)
6)\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
7)\(^{x^2+x-2\sqrt{x+1}+2=0}\)
8)x-4\(\sqrt{2x+4}-2\sqrt{1-x}+10=0\)
Cho các số thực dương x,y,z thỏa mãn xyz = 1 CMR:
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{^{ }yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
cho biểu thức A=\([\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm điều kiện xác định
b)Rút gọn A
c)Biết xy=16 tìm các giá trị của x,y để A có giá trị nhỏ nhất, tìm giá trị đó.