Lời giải:
ĐK: $x\geq 0$
Đặt $\sqrt{x+1}=a; \sqrt{x}=b$. ĐK $a,b\geq 0$ thì ta có:
$a-b-ab=a^2-2b^2$
$\Leftrightarrow a-b=a^2+ab-2b^2=(a-b)(a+2b)$
$\Leftrightarrow (a-b)(a+2b-1)=0$
$\Leftrightarrow a=b$ hoặc $a+2b=1$
Nếu $a=b\Rightarrow a^2=b^2\Leftrightarrow x+1=x$ (vô lý)
Nếu $a+2b=1$
$\Leftrightarrow \sqrt{x+1}-1+2\sqrt{x}=0$
$\Leftrightarrow \frac{x}{\sqrt{x+1}+1}+2\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}(\frac{\sqrt{x}}{\sqrt{x+1}+1}+2)=0$
Dễ thấy biểu thức trong ngoặc lớn hơn $0$ nên \sqrt{x}=0$
$\Leftrightarrow x=0$
Vậy.......