giải hệ pt sau
\(\left\{{}\begin{matrix}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+19y}\end{matrix}\right.\)
Bài 1: Giải PT
a) \(\sqrt{x^2-1}-x^2+1=0\)
b) \(\sqrt{x^2-4}-x+2=0\)
c) \(\sqrt{x^4-8x^2+16}=2-x\)
d) \(\sqrt{9x^2+6x+1}\sqrt{11-6\sqrt{2}}\)
e) \(\sqrt{4^2-9}=2\sqrt{2x+3}\)
f) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
Giải PT:
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
Câu 1: Gải pt: 8x2 + \(\sqrt{\dfrac{1}{x}}=\dfrac{5}{2}\)
Câu 2:Giải pt: \(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}=x+21\)
Câu 3: Tìm m để pt sau có nghiệm:
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
Giải các pt sau:\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\sqrt{x^2-10x+25}=3-19x\)
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
giải pt sau"
\(\sqrt{x^2+2x+5}+\sqrt{2x^2+4x+6}=4\)
Giải các phương trình:
1) \(\sqrt{x^2-2x+1}=x^2-1\)
2) \(\sqrt{4x^2-4x+1}=x-1\)
3) \(\sqrt{x^4-2x^2+1}=x-1\)
4) \(\sqrt{x^2+x+\frac{1}{4}}=x\)
5) \(\sqrt{x^4-8x^2+16}=2-x\)
6) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
Giải pt:
\(a)x^{4}-2\sqrt{2}x^{2}+2=\sqrt{2}+x \\b)(2x+3)\sqrt{x^{2}-2}=2x^{2}+3x-4 \\c)2x^{2}+2(x+1)\sqrt{x^{2}-1}-6x+1=0\)
Giải các pt sau:
1, \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
2, \(2x^2+2x+6=2x\sqrt{x^2-x+1}+4\sqrt{3x+1}\)
3, \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
4, \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2-2x+3}+\sqrt{x^2-x+2}\)
5, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)