Akai Haruma Nguyễn Việt Lâm
Akai Haruma Nguyễn Việt Lâm
Giải hệ PT: \(\left\{{}\begin{matrix}a^3+15ab^2=2\\3a^2b+5b^3=1\end{matrix}\right.\)
Giải hệ pt sau
a)\(\left\{{}\begin{matrix}\frac{x-12}{4}=\frac{y-9}{3}=z-1\\3x+5y-z=2\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\frac{a+b}{6}=\frac{b+c}{7}=\frac{a+c}{8}\\a+b+c=14\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x^3+6x^2y=7\\2y^3+3xy^2=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}6x-xy-2=0\\2\sqrt{\left(x+2\right)\left(3x-y\right)}=y+6\end{matrix}\right.\)
Giải hệ PT:
a)\(\left\{{}\begin{matrix}x^2-xy+y^2=21\\y^2-2xy+5=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}3x^2+5xy-4y^2=35\\5x^2-9xy-3y^2=15\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x^2-4xy+y^2=1\\y^2-3xy=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^2-3xy+y^2=3\\x^2+2xy-2y^2=6\end{matrix}\right.\)
Giải hệ pt và pt sau:
a.\(\left\{{}\begin{matrix}\left(2x-3\right)\cdot\left(2y+4\right)=4x\cdot\left(y-3\right)+54\\\left(x+1\right)\cdot\left(3y-3\right)=3y\left(x+1\right)-12\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x+y-1=0\\x^2+xy+3=0\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x-3y=5\\x^2-y^2=40\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x+2y=36\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\) . Tìm m để hệ có nghiệm (x;y) t/m x\(^2\)-2y\(^2\)=1
f. \(\frac{t^2}{t-1}+t=\frac{2t^2+5t}{t+1}\)
g.\(\frac{x^2+2x-3}{x^2-9}+\frac{2x^2-2}{x^2-3x+2}=8\)
1. a) cho \(1\le a,b,c\le2\). Tìm max \(P=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
b) \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\). Cmr: \(\sqrt{\frac{3a^2+1}{3b^2+1}}+\sqrt{\frac{3b^2+1}{3c^2+1}}+\sqrt{\frac{3c^2+1}{3a^2+1}}\le\frac{7}{2}\)
2.a) \(a,b\ge0;c\ge1;a+b+c=2\). cmr: \(\left(6-a^2-b^2-c^2\right)\left(2-abc\right)\le8\)
b) \(\left\{{}\begin{matrix}a+b\le2\\a^2+b^2+ab=3\end{matrix}\right.\). Tìm max,min \(P=a^2+b^2-ab\)
\(\left\{{}\begin{matrix}a+b=2ab\\a^2+b^2=2\end{matrix}\right.\)
Giải hệ phương trình
a) \(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+xy+1=0\\x^2+y^2-x-y=22\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)