b.
Đặt \(\sqrt[3]{3x-2}=y\Rightarrow y^3=3x-2\)
Ta được hệ:
\(\left\{{}\begin{matrix}x^3+2=3y\\y^3=3x-2\end{matrix}\right.\)
Trừ vế cho vế:
\(x^3-y^3+2=3y-3x+2\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3\right)=0\)
\(\Leftrightarrow x=y\)
\(\Leftrightarrow x^3=3x-2\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)
Kiểm tra lại đề câu c
a.
Đặt \(\sqrt[3]{4x-3}=y\Rightarrow y^3=4x-3\)
Ta được hệ:
\(\left\{{}\begin{matrix}x^3+3=4y\\y^3=4x-3\end{matrix}\right.\)
Trừ về cho vế:
\(x^3-y^3+3=4y-4x+3\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+4\right)=0\)
\(\Leftrightarrow x=y\)
\(\Leftrightarrow x=\sqrt[3]{4x-3}\)
\(\Leftrightarrow x^3-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-3\right)=0\)