Lời giải:
ĐKXĐ: $x,y\geq 1$
Áp dụng BĐT AM-GM:
$x\sqrt{y-1}=\sqrt{x^2(y-1)}=\sqrt{x(xy-x)}\leq \frac{x+(xy-x)}{2}$
$y\sqrt{x-1}=\sqrt{y^2(x-1)}=\sqrt{y(xy-y)}\leq \frac{y+(xy-y)}{2}$
Cộng theo vế:
$x\sqrt{y-1}+y\sqrt{x-1}\leq xy$
Dấu "=" xảy ra khi : \(\left\{\begin{matrix} x=xy-x\\ y=xy-y\\ x,y\geq 1\end{matrix}\right.\Leftrightarrow x=y=2\)
Vậy........
Lời giải:
ĐKXĐ: $x,y\geq 1$
Áp dụng BĐT AM-GM:
$x\sqrt{y-1}=\sqrt{x^2(y-1)}=\sqrt{x(xy-x)}\leq \frac{x+(xy-x)}{2}$
$y\sqrt{x-1}=\sqrt{y^2(x-1)}=\sqrt{y(xy-y)}\leq \frac{y+(xy-y)}{2}$
Cộng theo vế:
$x\sqrt{y-1}+y\sqrt{x-1}\leq xy$
Dấu "=" xảy ra khi : \(\left\{\begin{matrix} x=xy-x\\ y=xy-y\\ x,y\geq 1\end{matrix}\right.\Leftrightarrow x=y=2\)
Vậy........