- Với \(x=\left\{100;101\right\}\) là 2 nghiệm của pt
- Với \(x< 100\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|>0\\\left|x-101\right|=\left|101-x\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn
- Với \(x>101\Rightarrow\left\{{}\begin{matrix}\left|x-101\right|>0\\\left|x-100\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn
- Với \(100< x< 101\Rightarrow\left\{{}\begin{matrix}0< x-100< 1\\0< 101-x< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|^{100}< x-100\\\left|x-101\right|^{101}=\left|101-x\right|^{101}< 101-x\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}< x-100+101-x=1\) ptvn
Vậy pt có đúng 2 nghiệm \(x=\left\{100;101\right\}\)