\(3x\left(x-2\right)-5x+10=0\\ \Leftrightarrow3x\left(x-2\right)-5\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\3x=5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{2;\dfrac{5}{3}\right\}\)
\(3x(x-2)-5x+10=0 \\ \Leftrightarrow 3x(x-2)-5(x-2)=0 \\ \Leftrightarrow(x-2)(3x-5) =0 \)
\(\Leftrightarrow \left[ \begin{array}{l}x-2=0\\3x-5=0\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}x=2\\x=\dfrac{5}{3}\end{array} \right.\)
Vậy \(S={2;\dfrac{5}{3}\).