Ta có : \(x^3-x^2-21x+45=0\)
=> \(x^3-3x^2+2x^2-6x-15x+45=0\)
=> \(x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)
=> \(\left(x^2+2x-15\right)\left(x-3\right)=0\)
=> \(\left(x^2+3x-5x-15\right)\left(x-3\right)=0\)
=> \(\left(x\left(x+3\right)-5\left(x+3\right)\right)\left(x-3\right)=0\)
=> \(\left(x-5\right)\left(x+3\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x-5=0\\x-3=0\\x+3=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=5\\x=3\\x=-3\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 5, x = -3, x = 3 .