ĐKXĐ: ...
\(\Leftrightarrow x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\) \(\Rightarrow x=3\)
ĐKXĐ: ...
\(\Leftrightarrow x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\) \(\Rightarrow x=3\)
Giải phương trình:
\(x^2-5x+14=4\sqrt{x+1}\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
giải phương trình \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Giải phương trình:
$a) \sqrt{x - 7} + \sqrt{9 - x} = x^{2} - 16x + 66$
$b) \sqrt{3x^{2} + 6x + 7} + \sqrt{5x^{2} + 10x + 14} = 4 - 2x - x^{2}$
$c) \sqrt{x - 2} + \sqrt{10 - x} = x^{2} - 12x + 40$
Giải phương trình:
$a) \sqrt{x - 7} + \sqrt{9 - x} = x^{2} - 16x + 66$
$b) \sqrt{3x^{2} + 6x + 7} + \sqrt{5x^{2} + 10x + 14} = 4 - 2x - x^{2}$
$c) \sqrt{x - 2} + \sqrt{10 - x} = x^{2} - 12x + 40$
giải các phương trình sau :
a ) \(7\sqrt{4x^2+5x-1}-14\sqrt{x^2-3x+3}=17x-13\)
b ) \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)
Giải phương trình \(\sqrt{x^2+3x-4}-\sqrt{x^2-5x+4}=x-1\)