Giải PT:
\(x^2-2x+y^2-6y+10=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-3\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) mà \(\left(x-1\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy...................................................
giải phương trình:
x^2−2x+y^2−6y+10=0
<=>(x^2 - 2x+1)+(y^2-6y+9)=0
<=>(x-1)^2 + (y-3)^2=0