\(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x\right)^2+2.2x.1+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy S={\(-\dfrac{7}{2};\dfrac{5}{2}\)}
\(\Leftrightarrow4x^2+4x+1=36\)
\(\Leftrightarrow4x^2+4x-35=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)