\(x^2\sqrt{5}-20=0\)
<=> \(x^2\sqrt{5}=20\)
<=> \(x^2=4\sqrt{5}\)
=> \(x=\sqrt{4\sqrt{5}}=2\sqrt[4]{5}\)
\(x^2\sqrt{5}-20=0\)
<=> \(x^2\sqrt{5}=20\)
<=> \(x^2=4\sqrt{5}\)
=> \(x=\sqrt{4\sqrt{5}}=2\sqrt[4]{5}\)
Giải phương trình
\(\sqrt{x+5}+\sqrt{4-x}-\sqrt{-x^2-x+20}=3\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=\dfrac{5}{2}\\x+y-5=0\end{matrix}\right.\)
Giải các phương trình: \(\sqrt{x+5}+\sqrt{3-x}-2.\left(\sqrt{15-2x-x^2}+1\right)=0\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)
Giải các phương trình sau: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(4+\sqrt{x^2+7x+10}\right)=6\)
Giải các phương trình sau: \(7x+6\sqrt{x+5}=x^2+30\)
giải phương trình \(\sqrt[3]{x^2-1}-\sqrt{x^3-2}+x=0\)
Giải phương trình:
\(x^2+9x+20=2\sqrt{3x+10}\)