Dễ thấy \(\dfrac{2}{\left(\sqrt[3]{2x-1}+2.\sqrt[3]{2x-1}+1\right)}+\dfrac{1}{\left(\sqrt[3]{x-1}\right)^2}>0\)
Vậy (1)\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy S={1}
\(\sqrt[3]{2x-1}-1+\sqrt[3]{x-1}=0\)
\(\Leftrightarrow\dfrac{2x-2}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}+\sqrt[3]{x-1}=0\)
\(\Leftrightarrow\sqrt[3]{x-1}\left(\dfrac{2\sqrt[3]{\left(x-1\right)^2}}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}+1\right)=0\)
\(\Leftrightarrow\sqrt[3]{x-1}=0\Rightarrow x=1\)
(Do \(\dfrac{2\sqrt[3]{\left(x-1\right)^2}}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}+1>0\) \(\forall x\) )