Ta có:Giá trị tuyệt đối của một đa thức luôn luôn >=0
Mặt khác, ta có -2x2-2=-2(x2+1) luôn luôn <0(vì x2+1 >=1>0),(-2>0)
-->không thể có giá trị của x phù hợp
Ta có: \(\left|2x^2-5x+3\right|=-2x^2-2\)
\(\Leftrightarrow\left|2x^2-5x+3\right|=-\left(2x^2+2\right)\)
mà \(\left|2x^2-5x+3\right|\ge0\forall x\)
và \(-\left(2x^2+2\right)< 0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(S=\varnothing\)
\(\left|2x^2-5x+3\right|=-2x^2-2\)
TH1 : \(2x^2-5x+3=-2x^2-2\Leftrightarrow4x^2-5x+5=0\)( vô lí )
vì \(4x^2-5x+5=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{35}{16}=\left(2x-\dfrac{5}{4}\right)^2+\dfrac{35}{16}>0\)
TH2 : \(2x^2-5x+3=2x^2+2\Leftrightarrow-5x+1=0\Leftrightarrow x=\dfrac{1}{5}\)
Vậy tập nghiệm phương trình là S = { 1/5 }