Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jeon Jungkook

giải phương trình sau:

a, \(x^4+x^2-2=0\)

b,\(x^4-13x^2+36=0\)

c, \(\dfrac{1}{8}x^3+\dfrac{3}{4}x^4+\dfrac{3}{2}x+=-1\)

Toyama Kazuha
10 tháng 8 2018 lúc 9:43

a) \(x^4+x^2-2=0\)
\(\Leftrightarrow x^4+2x^2-x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2+2\right)-\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+2=0\) hoặc \(x+1=0\) hoặc \(x-1=0\)
. \(x^2+2=0\Leftrightarrow x^2=-2\) (vô nghiệm)
.. \(x+1=0\Leftrightarrow x=-1\)
... \(x-1=0\Leftrightarrow x=1\)
Vậy \(S=\left\{\pm1\right\}\)

b) \(x^4-13x^2+36=0\)
\(\Leftrightarrow x^4-9x^2-4x^2+36=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)-4\left(x^2-9\right)=0 \)
\(\Leftrightarrow\left(x^2-9\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-3=0\) hoặc \(x+2=0\) hoặc \(x-2=0\)
. \(x+3=0\Leftrightarrow x=-3\)
.. \(x-3=0\Leftrightarrow x=3\)
... \(x+2=0\Leftrightarrow x=-2\)
.... \(x-2=0\Leftrightarrow x=2\)

Vậy \(S=\left\{\pm3;\pm2\right\}\)
Câu C bạn ghi ko rõ lém!!!!!!!!


Các câu hỏi tương tự
Trần Minh Hưng
Xem chi tiết
Mi Bạc Hà
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
nguyễn phương thùy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ha My
Xem chi tiết
Trương Hạ My
Xem chi tiết
Vũ Thị Phương
Xem chi tiết
Ngân Chu
Xem chi tiết